Path integration over the n-dimensional Euclidean group
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The path integral for the n-dimensional free particle is considered. According to the underlying
symmetry, the short time propagator is expanded in zonal spherical functions of the Euclidean
group G = T'" DSO(n) with respect to the subgroup H = SO(n). The group theoretical
approach to path integration, including the radial part, is explicitly demonstrated.

I. INTRODUCTION

Recently, the present authors' have developed a general
scheme for path integration on a homogeneous space given
by a group quotient G /H, HC G. For a trivial group H = {e}
the short time propagator has been expanded in group char-
acters of G. In all other cases H s£{e} the group expansion
has led to a decomposition of the short time propagator in
zonal spherical functions. Up to now this technique has only
been applied to the generalized polar coordinate path inte-
gral' and to the path integration on spaces with positive and
negative curvature.” The purpose of the present paper is to
include radial path integrals in this group theoretical ap-
proach. The free particle in n dimensions is considered
where the Euclidean space E,, is viewed as the quotient G /H.
Here G is the n-dimensional Euclidean group, which is a
semidirect product of the translation group and the rotation
group in n dimensions, T* ® SO(n), and H = SO(n).

This paper is organized as follows. In the next section,
the n-dimensional Euclidean group and its representations
are discussed in some detail. The Fourier decomposition of
functions f(g) of geG, satisfying £ (h ~'gh) =f(g) for
heH, is constructed explicitly. In Sec. 111 this decomposition
is applied to expand the short time propagator in zonal
spherical functions D g, (g) of GO H. An integral represen-
tation of the free particle propagator is obtained, leading to
the well-known result of Feynman.?

Il. THE EUCLIDEAN GROUP IN 17 DIMENSIONS,
G=T"9 SO(n)
The Euclidean group G = T" ® SO{n) acts as a trans-

formation group in the Euclidean space E, of » dimensions
via the map

ga—ha+r, geG, (2.1)

where £ is an n X n matrix representation of the subgroup
H=80(n). The parameters of the group element
g =g(r,h) are the n(n — 1)/2 Euler angles of & and the n
coordinates of the translation vector r given (for conven-
ience) in polar coordinates (#,@ @+ @ —). The group
composition law is

g(ruhy)g(r2hy) = g(ry + hyry,hihy). (2.2)

A general group element may be decomposed into a transla-
tion and a rotation (see Ref. 4, p. 548)

g(r,h) =g(r,1)g(0,h) =g(o,h)g(h ~'r,1),
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where 1 stands for the # X 7 unit matrix and o is the n-dimen-
sional null vector. Obviously any point r in E, may be ob-
tained via a translation of the origin o,

(2.4)

Accordingly we may restrict g in (2.4) to the form g(r,1), as
the origin is invariant under pure rotations g(o,#). More-
over, any function f (r) defined over E, may be viewed as a
function f(g) on the group manifold of G. Especially if
f(r)=f(r) depends only on the radial distance r, it is a
function invariant under rotations g(0,4). The zonal spheri-
cal functions D &, (g) having this property are given by Bes-
sel functions (see Ref, 4, p. 553)

Do (@) =T (n/2)Q/kr) =D, _, . (kr), (2.5)

where r is the radial polar coordinate of the translation vec-
tor r in g(r,h). The bass states of G are usually labeled by £,
/, and M corresponding to the conserved energy (E = #2k %/
2m), angular momentum, and its degeneracy, respectively.

For a translation by » along a fixed axis a, e.g., the unit
vector in x,, -direction, the associate zonal spherical function
reads (see Ref. 4, p. 554) -

g 0>r.

D f.o (g(msl)}

= fr(n/z)[(21+ n—gy LUA+n—2)117

HT(n~1) (2.6)

2 \(1-22
X(};) S1v iy (kr),

where L stands for the (n — 1)-tuple L = (/,0,...,0), with
{=0,1,2,.... Note that any r may be obtained from ra
through a pure rotation heSQ(n), r = h(ra). (See Ref. 1.)
Asis known, a function £ (g) invariant under a rotation
g(0,h1) may be expanded in zonal spherical functions:

1@ =f° dk F(k)d, D (2), @7
where
Fik) =Ldgf(g)D6‘3(g)- 2.8)

In the above, dg is the invariant volume element of G given
by

dg = dr dh, (2.9)
where dh is the normalized invariant Haar measure of
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H=250(n), fy dh =1 and dr is the usual Euclidean mea-
sure. The “dimension” d, is defined by

Sk—k

“(—d“—)' f dg D5 (g) DY (g). (2.10)
Using the explicit form (2.5) we find 7

Sk—k")y (i!_) 27— g2

d, 2/ (kk'yln—nn2
XI drr i, _ a2y (kD) 5y (K'P).
0
(2.11)

Comparison with the closure relation of Bessel’s function®

f drrJ, (kr)J, (k'r) = -;lc—ﬁ(k— k") (2.12)

[+]
leads to the identification

d.=k"'/[2" ' T (n/2)]. (2.13)

For n = 2, d,, agrees with Barut and Raczka® who discuss
the harmonic analysis of T2 ® SO(2). )

Finally we would like to mention that for f(#)
=f ("~ V227)? and F(k) =F(k)k"—= "7 the
transformation (2.7) leads to the Hankel transformation of
order v= (n—2)/2:

7= f " dk BT, ()R,
’. (2.14)

Fek) =f drf(r)J, (kr)Jkr.
(4]

Il. PATH INTEGRATION OVER G

As an application of the above group expansion we con-
sider the Feynman propagator of an n-dimensional free par-
ticle given in the sliced time basis

72 i
#|(7)s ]

- N m "
K(ryr;T) = lim L[I, [(2m‘ﬁe)

N—1

X II drs (3.1
J=1
where the short time action is given by
S; = (m/2€)(Ar;)> (3.2)
Here we have adopted the usual notation Ar, =r;, —r; _,
r,=r, r,=ry and an isometric tlme slicing

eN=¢t, —t, =T

Let us consider the group element g = g(r;,1). Obvi-
ously the origin is mapped ontorr; via the translation g;. The
combination,

gj:llgj =g_'(l'j- 1 ,l)g(l'pl) = g(l} —F_, 1), (3.3)
is just the translation mapping o onto Ar;. Therefore the
short time propagator in (3.1) may be considered as a func-
tion (g~ g,) on G which depends only on the parameter
r = |Ar;| of the group element (3.3). Hence the Fourier de-
composition (2.7) may be applied to exp{(i/#)S;}, where
the coefficient (2.8) is given by {(z = m/2i#e),
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F(k) = 20"2(2/k) =272

% f dr =T 32 (KT, (3.4)
0

In (3.4) the integration over the subgroup H and the group
parameters (@,...., _) of the translation vector r has been
performed. Using the integral formula’

J dx x¥tle= T, (Fx)
0

=B8"Q2a) ">~ ' exp{ — B%/4a},

Rea>0,8>0,Rev> — 1, (3.5)
we find

F(k) = (n/z)"* exp{ — k?/4z}. (3.6)

To be more explicit we have derived the decomposition

(Ef:ﬁ)m o [ﬁZe 1A, iz}

ifik e

-_—f dk exp[— ]dkbgo(g}'_‘lgj). 3.7
0 m
With the aid of the orthogonality relation,
fdr,- Do (gt g )D& (g g 1)
Sk—k'
=—-(—d—’D§ocg,:.g,+, ) (3.8)
. k

the path integration can be performed leading to the follow-
ing integral representation of the free particle propagator:

K(r,,r,;T)
o . 2272
=f dkexp[—L frk T} d, D (8 '8).
[+] i 2m

The energy spectrum may be identified tobe E, = #°k2/2m.
In order to obtain the normalized wave functions we make
use of the group property

3.9) ‘

:‘m(gn_ igb) =ZD O(gb)D (ga
L

As r=h(ra), it follows from (2.3) that g=g(r,1)
= g{0,h)g(ra,1)g(0,h ") and the associate spherical func-
tions

D3 olglo,h)g(ra1)g(o,h “')) =D},(g(0,h)g(ra,1))
decompose into

k
; Di,.
Note that the sum vanishes unless L' is of the form L’ =
(10,...,0) (see Ref. 4, p. 555) and D%, .(g(0,h)) reduces
to the associate  spherical functions of SO(n),
D3, .(g(0,h)) = d jy0 (h), given in Ref. 1. Collecting every-
thing, the propagator (3.9) is rewritten as

(3.10)

Dio(g) = (glo,m))D%, (g(ra,1)). (3.11)

K(ry,r;T)
=" akexp| - (i) E T]
J(; exp{ 7 k
xz W (0 YW (1) (3.12)
¥
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with
Ve () = @Di.o(g(ml))d o (1)
=k /P ) 2, 2y (k)

XAL(n/2)/ 27" Y, (&), (3.13)

In the last step, we have used Eq. (2.6). ¥, (e) are the
hyperspherical harmonics in n dimensions.’ The integers m,
of the set M= (m,.,m,_,). are related by
HBmpmy3-3m, _y3|m, _,|>0. With Eq. (2.12) the
normalization

J.dr \pkn'M (r)‘l’:l;r”r (r) = 5(!‘ - k')sﬂ'"sMM' (3-14)

is shown immediately,
Performing the integration in (3.12) by using formula
$#6.6332 of Ref. 7, we obtain

K(rb!ra;:r)
=M (2= )2 im
g o) exP{ZﬁT (s +'2")]

= mr,r,
xigoIH-(n—Z)/z( i#T )

x;“_;t’#%l Yiu(e) Y i(e,).
For n =3, (3.15) reduces to the result of Peak and Ino-
mata,®
Finally we would like to mention that the k integration
can be directly performed in Eq. (3.9) via (3.5), leading to
the original result of Feynman,?

m \*? im
K L a; = ) { - a 2]‘
(FoirsT) (Zm'ﬁT K| 257 Fo el
(3.16)

(3.15)

IV. DISCUSSION

In the present work we have applied the expansion in
zonal spherical functions, developed in Ref. 1, to the path
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integration over the Euclidean group in # dimensions. The
technique has been explicitly demonstrated for the #-dimen-
sional free particle. Qur result for the free particle coincides
with that obtained via the Gaussian path integration, as ex-
pected. However, in the present approach the application of
group theoretical methods has been extended to include the
radial path integration. Until now only the angular path in-
tegration over rotation groups had been considered. Now we
may conclude that the complete path integral treatment can
be incorporated in the formalism of Ref. 1. Here the Euclid-
ean group has been considered. However, the same tech-
nique may be applied, for example, to the path integration
over the pseudo-Euclidean group T" % SO(n — 1,1) in n
dimensions.
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